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I, INTRODUCTION

In this report, the stabllity of a pinched fluid is studied
theoretically, under the combined influence of a longitudinal magnetic
field and conducting exterior shell, Conditions allowing complete
stabllity are found.

The stabilizing effect of a conducting shell seems first to have
been pointed out in 1953 (Tuck, Wash-l46), and calculations of the
general stabllizing effect of a longitudinal field in 1953 (Kruskal
and Tuck, LA-1T16), whose notation we use in this report. Low power
experiments (Wash~184, 1954) gave no indication of beneficial effects
from & longitudinal field, though it was realized that the pinch
currents then available were scarcely adequate,

Some unclassified qualitative calculations of the conducting shell
were also available in 1954 (Bostick, Levine, et al., Tufts College, Note
#14), An expreé;ion using magnetohydrodynamicé for the combined effect
of longitudinal field and conducting shell was obtained in 1954 (Kruskal,
PMS-16) and independently, Rosenbluth, UCRL-1954; but its implications
not fully realized at the time. More recently (December, 195&), special
advantages of an internal trapped longitudinal field and a hollow cylindri-
cal plasma were pointed out by Levine and Combs, Tufts College, Note #16,
although their quantitetive results disagree with those derived in this

paper. At the Los Alamos Christmas, 1955, meeting, discussions between
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Colgate, Kruskal, Rosenbluth, Teller, and Tuck also emphasized this
point. At the insistence of Colgate, 1956 , the expression described
above was evaluated, and this report presents these results. We also
will calculate the stability criterion without the magnetohydrodiynamics
approximation.

The geometry considered (see Fig. 1) is that of an infinite
cylinder along the z-axis. Inside radius r_ is the confined plasma
at uniform pressure and density and containing uniform longitudinal
field of magnitude °‘pB o Outside the plasma is a region of vacuum
extending to the perfect external conductor at radius ﬂr + In the
vacuum is a field with azimuthal component B f—- and longitudinal
component O(V.B We consider perturbations which vary like [ 1(kz s m@)]
Our object is to find stable configurations, i.e., to discover for what

values of the parameters o(p, &,, and ,8 the pinch is stable for all 'm

v
and k.
external conductor
74
, —> *yB,
Az, ®s,
o Ty Boplessa L > 2

Fig. 1 Geometry considered in this report.




The method used to calculate the stability ie to make the relevant
virtual displacement and note whether the resulting pressure distri-
bution at the plasma surface ls such as to cause the displacement
to grow. This is equivalent to calculating the change of energy of the
system. Our resulting expression ;n the magnetohydrodynamic case is
identical with that of Kruskal. It says that for a given set of

parameters, oy Xy /8 ,ymy Y= kro, the pinch is stable if:

2 Gga(D KX - (D)
1- %’m(Y)

qi ¥ Km(Y) + (m + O(VY) >1 (1)

Km’ Lm’ and (.iﬁ,m are defined in terms of Bessel functions as
J (1Y) . H (1Y)
K (Y) = o L (Y) = o=
m iY J!;li 1Y)’ m iy Hr;ll iY)
(1)
H'(i8Y '(iY
Gg,m(¥) = ;’;f(f;)) J:?i a)z)
? m m p

The particle picture leads to a slightly different form

b1t (p, - Go (YY) K (Y) - L (Y)
éaf Slap3)>u§xzxm(~cy)+(micxvY)2 i8,n 0 %0 - Lyl 31

(2)

2 -
op B g 1 Gﬂ,m(Y)
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Here Py and p3 are components of the pressure tensor along and

verpendicular to the field respectively and

A )

2 .2

(o Bo/4T) + sp,

3’ =
(3)
Siaf/a/« [a- /‘2)2//“] au

w0
i
OV Fo

1 2
S (R (1 - 47) apm
[s)

where fgu) represents the initial angular distribution of particle
velocity relative to the z-axis. For an initially isotropic distri-
bution 8§ = p - p3 = 0 and Eq. 2 becomes identical with Eq. 1. In
practice, it is likely that p3 > Py and Eq. 2 is then somewhat less

favorable than Eq. 1. This is discussed in more detall at the end

of Section V.
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II. DERIVATION OF THE EQUATION OF MOTION

The equation governing the field change is

wd

' e
=2~ VXE=+ Y x (% x B) (%),

ol
VD
ct

The second equation in the plasma is the equation expressing the
fact that particles are tied to field lines and move with the E x B

drift. We define
i:j?dt | (5)
Then we ma& integrate Eq, 4 to obtain for the change in field
$B= vx (Y 2 o ®

where Bi is the unperturbed field. We are, of course, interested only
in terms linear in the displacement, i?.

As we have mentioned earlier, our method is to make a virtual
displacement which, within each medium, presérves the equilibrium

condition. Thus in the vacuum

-»
T-Y a0 (1)
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and in the plasma

. |
(X228 43 - g.p=o | (8)

where p is the pressure tensor of the plasma.

In the magnetohydrodynamic approximation, Eq. 8 becomes

-’
(Z523) x B, - vp = 0. (9

When we consider non-scalar effects Eq. 8 becomes1

(-SZ'___"iE TTL) x Bi - VP3 + (Pl - P3) GT]_- + gl xl - ———-——ib éa;‘:

(10)

Here Qi is a unit vector along the field lines and b the magnitude of

the field. The pressure tensor is of the weli-known form

pl 0 0
p={ 0 p3 O (11)
0O o
P3

1. See Los Alamos notes on ionized gases.




III. DETERMINATION OF THE PERTURBED VACUUM FIELD

From Eq. 7, we may write

s3= v
> (12)
V-§B =v2*|’= o]
The aoluti‘on with the desired z and 4 dependence is
ilkz +mg
V= [A I (ikr) + BH (ikr)] e [ ] (13)

A and B are to be determined from the boundary condition at the external

conductor and displaced plasma interface

§8 -2 =0 | (14)

or
§B.(Br,) =0
‘ (141)
SBr(ro) + BQS[~ ikay, r re im] =0

where we have assumed the displaced plasma interface is given by

*d 400




(15)

We may now use Eq. 14' to determine the coefficients A and B in

Eq. 13.

J (ix 8 ro)

B=-A 0 (kA7)
(16)

B, 5/ [xayz, +m ]
Jr;n (ikro) - [:Jl;1 (ik‘p ro)[Hn'x (il;,erof] Hx;x (ikrOT

A=

F:Lnally, we calculate the change in pressure on the plasma surface
resulting from the displacement

ﬁ oS i(kz + qu)

- 5@ =ﬁ[53 + %y 88, ] <o (17)

T
The last term in Eq. 17 results from the evaluation of BO—I?- at the

displaced radius.

Using Eqs. 1', 12, 13, and 16, we finally get

2 - .
B i(x ) : (Y) x (¥) - L (Y
5%, = % e “““’{-umww e -"’;,,j,m"”§<18>

We note that - 1 in Eq 18 tends to give & P_ the opposite sign

for the displacement. In other words, the pressure is smaller where




— ;
SN—==
TSI T TS YT T

o —

the surface is bulged out, thus lending to instability. We must still,
of course, calculate § Pi*the resultant pressure inside,in order to

obtain the net restoring force,




IV, PLASMA EQUATIONS IN MAGNETOHYDRODYNAMIC APPROXIMATION

The equation of equilibrium in the plasma is given by Egs. 6 and

9 as
-> d ->
%V" Vx(xxBi)§ xB, - yép=0 (19)

To evaluate § p we note

da -»
E£= - Py
(20)
-7
Sp =0
so that we may find

-3
If we multiply Eq. 19 by Bi’ we obtain

Y
B, VV -§ =0

Since ?1 in the plasma is in the z direction and ¥ - g for our per-

turbation varies as ekz , we must have




5 .
sr=v-f =0 \ | . (22)

: ‘ -p :
In considering the components of Eq, 19 normal to B, it is useful

to use the vector identity

- - ‘
Vx(§xB) =+ (8 + ) -(§- V) Bi»,i?iv.?.fv,?i

In our case, this simplifies to
-» > - g
SB=Vx(‘§xBi)a+.(Bi-v)E ‘ (23)
and Eq. 19 becomes

(8, *7) (yx §)=0

since B - ¥ commuteswith 7x and the other terms vanish.

As before, this implies

‘ - ‘
VXiaO ‘ : - (2b)
Finally, Eqs, 22 and 24 imply

> 1(kz + m
zacV[Jm(ik,r)e ( "‘-”-*-“‘QZ'
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The boundary condition on ’gr is given by Eq. 15 so that

§- m'*r T | dylten) o 2 M)]

From Eqs. 23 and 25

k

Finally, we compute

B
i
SPiﬂmSBzatI"‘=ro

and recall that Bi = o(p BQ to obtain

2
6Pi "E"Eﬁ"" YQK(Y) ei(kz+m()

We are now prepared to write the stability condition

Fo = 8Py

T D) 0, and by using Eq. 18, we obtain Eq. 1
)

0 %,m(y) K (Y) - L,(¥)
s b

X5 ¥ K1) + (w2 oY)

(25)

(26)
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V. ADIABATIC INVARIANT CALCULATION

In applying Eq. 10, the principal problem is the evaluation of
the changes in the pressure tensor broyght about by thie deformation.
These will be caleculated by considering the effect of the displacement
on the orbit of a single particle and then summing over all orbits.
Before the deformation, the number of particles per cubic
centimeter per unit energy and solid angle is given by g(Eo)fQM)dEodfﬁ
Here Eo and 4 are the energy of the particles and the direction
cosine of its velocity vector with the z-axis before the displacement,
The adiabatic invariasnts of the motion are the magnetic moment and

the action integrel (see footnote 1).

E E (1 - p)
3 o . ‘
- = t = - 2
B, + §0()  O°® B, (27

JET ot f fo v 5%~ o v so][a,0 -2 m,] o <\ fof
(28)

Here SEO and §b(f) ere the changes induced in E and B by the dis-

placement, EJ_and E  are the orbital energies perpendicqlar and parallel

in
to the field lines. d,ﬂ is the element of length along the line.
Relations 27 and 28 are related to conservation of angular

momentum about the field direction, and conservation of linear



momentum along the field lines. The integral on the left of Eq. 28 is
to be extended over a complete period of the perturbation, unless E T

goes to zero in which case the integral isg to be extended between the

turning points of the orbit,

Now the variation in field strength is given by

§b=E(r) B, cos (kz + m@).

Along a given field,line r and @ are constant while z varies.

Hence, in Eq. 28, we may use f = (kz + m@) and

s‘b(ﬂ) = E_‘Bi cosI

so that Eq. 28 becomes

1+ (§E/ME,)

21 or 21l'-cos

(1- £°/p5)¢8
/4/@ +(§E/u Eo)] l-_(l - M )/,«-] € cosf df 27 (29)

1+ ($ E/,“aE
#e/pB)E

0 or cos™t

Eq. 29 is the determining equation for § E. The alternative limits

on the integral are to be used if the v = would be negative at Q0 or
21,

«16-




Next we must write down the expression for the pressure as a sum
over particles. The equilibrium equation in the direction'@l, along
the lines, is automatically satisfied by this approach, since it only
means that the particles are moving in orbits consistent with the
magnetic field. It is relatively trivial to verify this by direct
computation, so we need only write down the expression for p3. By
definition, p3 is the energy density per cubic centimeter in the
plane L to the field., The contribution of the particles in the range
dEodv“o will be Just the density of such particles times their per-

rendicular energy, given by Eq. 27. The density of such particles is

(v ) [al
(E,A4) =g(E) £({) (L + € ) e (30)
S B f) = &(B) 1) (1 + € cost [@ti |
where
2 TN
v, = 1+—5§E -(1,'%‘) Ecosﬂ

and the limits on the integral are the same as those in Eq. 29.

The factor (1 + € cos f), the ratio of magnetic field to initial
field, arises from the fact that particles are attached to field lines
8o that their density is proportional to‘thg density of field lines,
i.e., B, The last term in Eq. 30 is the fraction of its time which the
particle spends at a given position of its orbit. Combining Egs. 27 end

30, we get

-17-
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co 1 :
2 2 21
Py =2 on g(E ) dE f duf(pm (1 - £%) (1 + Ecosil) W
) ;ﬁ " "
(31)

In writing Eq. 31, we have assumed f(M) to be even. # is the angle
at which v" vanishes., |

Next we introduce

1+ (SE)/(pMOE,

= e —— and obtain
[ - A%/ (a2)E |
o0 o ;
Py = Lt on g(Eo) aE f ate(p) (1 - /‘2) (1 + E cos 1)2
() cos {

1

/1'.—2%?77: 1% 7’12 '/ /T < (eos L7 )
0 or cos™1g
and Eq. 29 becomes
211,21 -cos™ 1T |
1(2) = 55 [/ - cos A" af L . (33)

0,cos™ g \/[71 '”%/([‘%j? :

From Eq. 33, we get

-18-




21,2 1M =cos ™2
3/2 ’
T g Gy
0,008 g A = (cos £1)/(%)

Substituting in Eq. 32

[+ o]

o 5/2
A% f 2 2
= E dE 1- 4 v »e b
p3 [g(EO) ° o° f - 0081 ( ) 8 (l * e eoe ) (3 )

cos £

We wish now to evaluate Eq. 34 up to terms linear in €, since higher
order terms are not needed for our linearized equations,

We may solve Eq, 33 for (1 - /»‘2)

1

(1- #%) - 5
1+ €I1°(7)

We observe that Ia('b')-"?'lf- % + «.. 88 D—o and goes to zero at

T = -1 and is finite at all points between, Let us also expand

s n
2 = 3 e, (- 4%

n=0

Then

©
P3 = Zan f g(Eo) EodEo
n 0

i 2 1
(L+€cosf)
T- cosl Jﬁ" °s (L + €Z')n+5 2

cosf

' ) n+5/2 (35)
[1+ £(8- T(®) /(L + €Y

19~
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We could then expand the last term in Eq. 35, since

2
ﬂ%—:—%—éﬂ { Const 12

It is then clear that, aside from the 1, the other terms contribute
to order € 3/2 , hence may be neglected.

We now reintroduce M by

2

€@ - cos £) = (1 + Ecos k) ~L—; (36)
. 1- M ‘
and expanding in powers of £, we get
® 1 2 n+l
Py = 2 f g(Eo) EodEo E a8 f (1 - pu%) fi/l - 8005,@
0] n 0 '
1 2 n+l '
-Znanf (1- 4%  ap (37)
n 0

The first term is clearly Jjust p3 , the initisl pressure. The
i

perturbation term may be written, remembering §b = B, € cos b4

l[(af)/(a,u)] [a- ,«2)2/(,‘)] ap

Y
sy = 2% — - -y dle (®)
: ff(ft)(l-/")d/t
0

where s is a shepe factor, dependent on the initial plasma angular
distribution. s vanishes for an initially isotropic distribution and

is positive for a distribution with motion predominéntly slong the

20~



field lines. Currently favored means of heating, by sidewise compression,
may tend to make s negative.

We now return briefly to the derivation of the stability criterion
in this case. Using Eqs. 6, 10, 38, and the fact that '{z Jllkz t m@)
we may write for the equations of equilibrium in the directions per=-

pendicular to the field

> =
vxgx(¥ xB,) P3
L I&T'T-E iflxgivswﬁi A\
i

B3]

(39)

Here

As we have remarked before, equlilibrium along the field lines is assured
by a particle orbit method such as we are using.
We also note that gz does not occur in our equations so we may

choose it arbitrarily so that
- 3 '
?.§=ik§z+v2.§=o (40)

vhere (7, is the two-dimensional operator on r and ¢ .

We also note that

vx (% xB)) = (3 -V)?:Bi kY

~2] =



T

The first term in Eq. 39 becomes on use of vector 1dentitiesg

—’
B,) B ikB ikB
[_vax(%rx AL - (vx D 23, 1[(5’ . V)

22 B2

¥
'V(B . -)],,-T__E rvv2 -g

Doing the same sort of manipulations on the rest of the equation

and throwing away components in the z direction, we get

2
B -3 - [[n2
(L om)on 108 [Een-n]eo w

The solution of Eq. 41 is

?2 = AV [Jm(ik‘a’r) ej'(kz b m@)] (h2)

Again the determination of A comes from Eq. 15, the condition

that § = érc‘ei(kz tn@)
A= 8%
ik 'YJ,;I(ik ‘Yro)

2, B8ee, for example, Margenau and Murphy, Mathematics of Physics and
Chemistry, p. 148.

«20-
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Finally, we must determine

B, 8V 8  P, S
1
§P, =5 * §py = Sb(ﬁr*ﬁf")
B k$r > J (ikwr)
= i i(k
$P=- (11'1'7* p3s> i‘;%ﬂﬁm) = ot ne)
2
!B .
57, = - (sh+25) 5 P2 K (TD (43)

Using Eq. 18, we finally obtain the stability criterion

1l- %J,Q(Y)

(l + ujﬂ(Pl: p3) ) o<§ e Km(’o' Y) + (m txvlf)2 Se’m(Y) (%) - Lm(Yv) >1

As we have remarked, this reduces to the magnetohydrodynemic result,
Eq. 1, for an isotropic distribution. In practice, with heating by side-
wise compression, the distribution is likely to be peaked towards A= O,
In general, thils appears harmful to stability. |

Of course, for cxi close to unity, we may expect the magneto-
hydrodynamic theory to be valid,

The unfavorable results occurring from having p3 large can be
understood physically, since particles with /A close to zero are
restricted by the mirror effect to the region of weak field and thus

are reduced in energy by the perturbation.




It is interesting to note that the 'no-heat flow" approximation,3

Ba
.-d..'_ pl =«(-1-- P3 =0
it \' €3 at \fB ’
seems to give erroneous results in this case. It ylelds Eq. 2 with

[ («2 BE/W') + Py - Py ‘

( 2 a/lm‘) + 2pg - (p§/3pl) ’

a much more favorable result.

It is perhaps worth remarking explicitly that the calculations we
have mede refer to both ions and electrons. If they have the same
initial angular distribution, then they will have the same density
along the lines after the deformation, and no space charge will be
developed. If their angular distribution is different, it would be
necesgary to modify the adiabatic invariants to include space charge
forces. The effect of this is obscure to me.

There may also be some question whether surface effects have been
treated adequately here. However, the change in energy of the surface
must be small in the ratio of Larmor radius to radius of the pinch.
The whole adiabatic invariant theory, of course, depends on small
Larmor radius, so this is consistent with our assumptions.

We now turn to explqration of the meaning of Eq. 1.

3. See footnote l.
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VI. DISCUSSION OF RESULTS

First ve consider briefly the nature of the functions appearing

in Eq. 1.
K,(Y) > 05 - L(Y) >o |

' ; 28,38 (o i
1> e m> 0 251 < ()
Also, as may be verified by substitution, K and L both satisfy the

differential equation

3—§ - 3 [1 - (n® + Y fa] (45)

1

Also, as a rough indication of behavior, one may consider

K () = - L (Y) 2 —= (46)

This is quite good for m » 2, fair for m = 1 and poor for m = O.
We now break up the discussion and consider cases of different m

separately.
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Here the equation becomes

G, (Y)K(Y)-1L(Y)
3 Aol':}&ohf)o >3 (b7)

2
Ay Y2 KO(Y) + (o(vY
It is easy to show
a ,,2
= (k) >o.

’We have also shown that the whole expression on the left of Eq. 47
has positive derivative at Y = O and Y = oo for all /3. It seems
plausible to assume this is so for all Y, though we have not proved it.
Substituting Y = O in Eq. 47, we find, using the limiting forms of the

Bessel functions,
2 2 2 1l
ap vy /(B7-1) 3 5 (48)

We may also, at this point, write down the trivial equation for

the existence of an equilibrium

X2+ of <1 (49)

!
bLde.
il
)




B. mp2

Let us denote the left hand side of Eq. 1 as F(qp, oKy My ¥, B).

Then we note that
F(O(p: O(V’ m, Y, ﬂ) 2 F(O(p.- O(V’ m, ¥, 00).

Hence, if the pinch is stable for ﬂ = OO0, it 1s certainly stable

for all finite £ . For [ =60 the stability condition, Eq. 1, becomes
2 2
&2 K0 - (m- o0 (n > (50)

Since we are looking for the most unfavorable situation, it is
sufficient to consider the -sign in (m + O(VY)a.

At Y =0, L (¥) = - 2 s0 Bq. 50 is certainly satisfied. At Y = oo,
since --Lm = Km = 1/Y, it is elso satisfied. Hence, it is clear that

for a given m and O(V, it is possible to find an o(p such that Eq. 30

o

. o]
is satisfied for all Y if o(P> °<p . Let us suppose we have done this
- %o
form = 2, 1.e,, we have found o(p such that
: o
For Xys O (v) D1 (51)

for all Y.
We will now show that Eq. 50 must also be satisfied for all

m > 2.
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First we introduce Y = 55— and rewrite Eq. 50 as

' 2 n.,
2.2 (3)2 Km5) - (2- «¥)? @) GY')
P

Hence, if we can show

2
(3) K(3Y) > Ky(¥)
(52)

2 ] 1
- 3 L(FY) > - ny(y)

then Eq. 50 must be satisfied for all m, Y in virtue of the fact it is

satisfied for m = 2,

e
m m
let (5) Km(E Y) = km(Y).
From Eq. 45, we have

2k 2 2K
m 1l m 2, ,2 | . 2 _
3‘?=f[(§)-<“+”km:l’ 7Y °

ltl - (4 + Y7 K§] (53)

i+

At Y =0
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2 Y
k -K, = e:[(k-o»K) (h;Y o /dY'% (E)2 1 g
3 -

m 2

=

+5-

>0 (54)

A similar procedure may be applied to the consideration of Lh'
Thus we have proved Eq. 52 and hence need only satisfy Eq. 50 for
m=2 and ﬂ= @ to get a sufficient condition for stability of all

higher m. The procedure used to do this is the same as that to be

described for m = 1.

The results are shown in Table I.

Table I -- Sufficient Condition for m > 2 Stability

“v,o,.l I.as .5,1'

o<§ l 067 ] .122 ‘ .222 l.;h62 l1.26o

By comparison with the figures of stability regions at the end of
this report, it may be seen that any system stable against m = 0, 1

appears to be stable for the higher modes.
C. m=1

For m = 1, our Eq. 1 becomes




o 5 Gpll(Y) K, () - L, (¥)
o ¥ K () + (1= ey) e e L)

Again it may be easily seen by looking at the asymptotic forms
that for any o(p, O(V,ﬂ, Eq. 55 must be satisfied at Y = 0 and oo,
At Y = 0, it is the effect of G 1 the external conductor, which makes
for stability. At Y = o0, it is the longitudinal fields., Due to the
appearance of the factor (1 - CKVY)Q, there is a region of wavelength
where the perturbation just fits the corkscrew of the external field
tending to make for poor stability.

It is also easily seen from Eq. 55 that for a given o(V and lﬂ,
one can find an cxpo such that all greater values of cxp satisfy
Eq. 55 for 211 Y. The method of calculation used was to fix cxv and
ﬁ, then solve Eq. 55 for 0(12) as a function of Y. The resulting curve
gives 0(12) = -c0oat ¥ =0 and 0(12) = - o<‘2, at Y = 00, with a maximum in
between. The value of this maximum is then cxpo, since for this value
of CKP’ there is only one wavelength which is neutrally stable.

These calculations were performed by Mrs. Josephine Powers to
whom many hearty thanks are due. Together w%th Egs. 48 PHd“H9J“Fh??
define a region of stable pinch configuration."These reglions are shown

in Figs. 2-6, which show the “p’ﬂ plane for O(V =0, .1, .25, .5, and

l.

In conclusion, we are led to expect that quite reasonable com-

pressions and fields lead to a stable configuration. In practice,
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of course, we must use a torus rather than an infinite ¢ylinder to
eliminate end losses, and one eventuyally must calculate in this
geometry. From what we have seen, & magnetohydrodynamic calculation
should suffice, It seems clear, however, that for tori with large

major to minor radius, our results should apply.
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STABLE

1.0

1.2
1.0
04 —




2 & 2 (] ® epe LX)
-y v o - *w
M.*"nwm I GG g e

W 4 =

| ey Ty .4‘.1 AL AL T Y Y Y S
. -?m?:m:q-wv;zw:m’ «m
2.0 =T

s — I

L) L v
o Goe¢ o

.2 —

0.8 STABLE -
0.6

Fig. 3 Stability diagram; °(V.= 0.25

2 _AS
L)

JO——

3

X e Preions: GUNETE
m""'""""""‘"
o g ——- 3"""‘“..” .
w o8 eed¢™ Ve 20 eee o

=t
L
) 268,
e i i et s v
Bian e B [

Viaany &
.o L2 L] L) v g

i

H

-~

1



1.2

08

0.6

0.4

0.2

a0 [ X X . ] . [ e

.o S840 RIS S0 ,2!. Q.-
y

v . ) s o8 o e - ]
‘4 2 ke, g g
-

Ol B Bl

STABLE

B

Fig. 4 Stability diagrem; o




STABLE

|
30
Fig. 5 Stability diagram; O(v =1

20

2.6
24
2.2
2.0

2.8

p . o%%ﬁﬁ.i&
!.lo’ » ﬂWw«. e mz ;Hé.amqi!ﬂﬁn

O-II.IIUOI! [ .!D'lz.lll.li o




QO
4
tad
)
Q
-
[72)
P4
2
I
E
W
)
e
-
2
=
mw po ]
[+ 4
@
—
3 W
- g
(@)
z P
| _
) © ©
-— (o] (o]
o Q.

50

4.0

3.0

Fig. 6 Stability diagram; x, =0





